Influence of biomass burning and anthropogenic emissions on ozone, carbon monoxide and black carbon at the Mt. Cimone GAW-WMO

نویسندگان

  • P. Cristofanelli
  • F. Fierli
  • A. Marinoni
  • F. Calzolari
  • R. Duchi
  • J. Burkhart
  • A. Stohl
  • M. Maione
  • J. Arduini
  • P. Bonasoni
چکیده

This work investigates the variability of ozone (O3), carbon monoxide (CO) and equivalent black carbon (BC) at the Italian Climate Observatory “O. Vittori” (ICOOV), part of the Mt. Cimone global GAW-WMO station (Italy). For this purpose, ICO-OV observations carried out in the period January 2007–June 2009, have been analyzed and correlated with the outputs of the FLEXPART Lagrangian dispersion model to specifically evaluate the influence of biomass burning (BB) and anthropogenic emissions younger than 20 days. During the investigation period, the average O3, CO and BC at ICO-OV were 54± 3 ppb, 122± 7 ppb and 213± 34 ng m−3 (mean± expanded uncertainty with p < 95 %), with clear seasonal cycles characterized by summer maxima and winter minima for O3 and BC and spring maximum and summer minimum for CO. According to FLEXPART outputs, BB impact is maximized during the warm months from July to September but appeared to have a significant contribution to the observed tracers only during specific transport events. We characterised in detail five “representative” events with respect to transport scales (i.e. global, regional and local), source regions and O3, CO and BC variations. For these events, very large variability of enhancement ratios O3/CO (from −0.22 to 0.71) and BC/CO (from 2.69 to 29.83 ng m−3 ppb−1) were observed. CO contributions related with anthropogenic emissions (COant) contributed to 17.4 % of the mean CO value observed at ICO-OV, with the warm months appearing particularly affected by transport events of air-masses rich in anthropogenic pollution. The proportion of tracer variability that is described by FLEXPART COant peaked to 37 % (in May– September) for CO, 19 % (in May–September) for O3 and 32 % (in January–April) for BC. During May–September, the analysis of the correlation among CO, O3 and BC as a function of the COant indicated that ICO-OV was influenced by air-masses rich in anthropogenic pollution transported from the regional to the global scale. On the other side, CO and O3 were negatively correlated during October–December, when FLEXPART does not show significant presence of recent anthropogenic emissions and only a few observations are characterized by enhanced BC. Such behaviour may be attributed to an ensemble of processes concurrent in enhancing O3 with low CO (upper troposphere/lower stratosphere intrusions) and to O3 titration by NO in polluted air-masses along with lower photochemical activity. An intermediate situation occurs in January–April when CO and O3 were almost uncorrelated and BC enhancements were associated to relatively old (10 days) anthropogenic emissions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomass Burning and Urban Air Pollution Over the Central Mexican Plateau

Observations during the 2006 dry season of highly elevated concentrations of cyanides in the atmosphere above Mexico City (MC) and the surrounding plains demonstrate that biomass burning (BB) significantly impacted air quality in the region. We find that during the period of our measurements, fires contribute more than half of the organic aerosol mass and submicron aerosol scattering, and one t...

متن کامل

Role of climate change in global predictions of future tropospheric ozone and aerosols

[1] A unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies general circulation model II0 is applied to simulate an equilibrium CO2forced climate in the year 2100 to examine the effects of climate change on global distributions of tropospheric ozone and sulfate, nitrate, ammonium, black carbon, primary organic carbon, secondary organic carbon, sea salt, and...

متن کامل

Impacts of 2006 Indonesian fires and dynamics on tropical upper tropospheric carbon monoxide and ozone

We investigate the relative impacts of biomass burning emissions and dynamics on tropical upper tropospheric carbon monoxide (CO) and ozone (O3) over western and central Indonesia during the August–November 2006 fires in equatorial Asia by using a global three-dimensional model of tropospheric chemistry (GEOS-Chem) and by comparing model results with Microwave Limb Sounder (MLS) observations of...

متن کامل

Biomass Burning and the Production of Greenhouse Gases

Biomass burning is a source of greenhouse gases, carbon dioxide, methane, and nitrous oxide. In addition, biomass burning is a source of chemically active gases, including carbon monoxide, nonmethane hydrocarbons, and nitric oxide. These gases, along with methane, lead to the chemical production of tropospheric ozone (another greenhouse gas) as well as control the concentration of the hydroxyl ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013